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ABSTRACT

For any n ≥ 3 we give numerous examples of central division algebras of

exponent 2 and index 2n over fields, which do not decompose into a tensor

product of two nontrivial central division algebras, and which are sums of

n + 1 quaternion algebras in the Brauer group of the field.

Also, for any n ≥ 3 and any field k0 we construct an extension F/k0

and a multiquadratic extension L/F of degree 2n such that for any proper

subextensions L1/F and L2/F

W (L/F ) 6= W (L1/F )+W (L2/F ), 2 Br(L/F ) 6= 2 Br(L1/F )+2 Br(L2/F ).

1. Preliminaries

Let F be a field of characteristic not 2. A well-known result of Albert states

that any central division algebra of index 4 and exponent 2 over F is a tensor

product of two quaternion algebras [A]. In [T1] Tignol proved that any algebra

of index 8 and exponent 2 is similar to a tensor product of four quaternion

algebras. Moreover, by Merkurjev’s theorem [M], any central simple algebra A

of exponent 2 over a field is similar to a tensor product of quaternion algebras. In

other words, any element [A] of 2 BrF is a sum of classes of quaternion algebras.
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If the index of A is 2n, then, obviously, the number of summands in this sum

is not less than n. If this number equals n, then by dimension count A itself is

isomorphic to a tensor product of quaternion algebras. We call a central simple

algebra over a field, decomposable, if it is a tensor product of two nontrivial

central simple algebras over the same field. Otherwise, we say that the algebra

is indecomposable. Obviously, if the algebra is indecomposable, it is necessarily

a division algebra, i.e. a skewfield. The first example of indecomposable algebra

of index 8 and exponent 2 was given in [ART]. In [K] Karpenko gave examples

of indecomposable algebras of exponent 2m and index 2n for any m ≥ 1, n ≥ 3,

n ≥ m. An algebra A of such a type is obtained by means of the “generic”

splitting of another algebra of index and exponent 2n. However, if expA = 2

and [A] =
∑p

i=1[(ai, bi)] in these examples, it is unclear how small one can

choose the number of summands p. In this paper we construct, for any field k0

and n ≥ 3, an indecomposable algebra of index 2n over some field E/k0, which

is a sum of n + 1 quaternion algebras in 2 Br E. One can choose the field E

having no proper odd degree extension. Moreover, all the summands are split

by the same prescribed multiquadratic field extension of degree 2n over E. The

description of the field E and the quaternion algebras is quite transparent.

We refer the reader to [Sch] as the main source concerning central simple

algebras and quadratic forms over fields. The notation used in the sequel is

more or less standard and coincides with the notation in [S]. All the fields in

the paper are supposed to be of characteristic different from 2. If F is a field,

then 2 BrF stands for the 2-torsion of the Brauer group of F . Slightly abusing

notation we will often identify a central simple algebra and its class in the

Brauer group. W (F ) and I(F ) are respectively the Witt ring of F and the

ideal of evendimensional quadratic forms in W (F ). By K2(F ) we denote the

Milnor’s K2 group of F . For u, v ∈ F ∗ the symbol (u, v) denotes the quaternion

algebra over F generated by the elements i and j with the relation

i2 = u, j2 = v ij = −ji.

If C is a projective conic over a field k, and p is a closed point of C, then k(C)

is the function field of C, and k(p) is the residue field at p. If f ∈ k(C)
∗
, then

(f) is the divisor of the function f . The abbreviations res, N , ind, deg denote

respectively restriction, norm, index and degree. If L/F is a field extension and

A is a central simple algebra over F , then by definition AL = resL/F A = A⊗F L.

We will write simply A⊗L instead of A⊗F L, or even merely A, if the restriction
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is clear from the context. The tensor product of central simple algebras over F

is always considered over F . The sign ∼ means similarity of algebras, i.e., their

equality in the Brauer group of the field.

2. Auxiliary and related results

The crucial point in the examples that we are going to give is some quaternion

algebra, which was constructed in [S] and which is the basic tool in the proof

of nonexcellency of multiquadratic field extensions in general. For the reader’s

convenience, we recall the construction of this algebra; moreover, that we need

some additional properties.

Let k0 be a field. Suppose n is a positive integer and a, b1, . . . , bn ∈ k∗
0/k∗

0
2

are linearly independent over Z/2Z.

Lemma 1: There exist a tower of fields k0 ⊂ k1 ⊂ · · · ⊂ kn and elements

xi, yi ∈ k∗
i for every 1 ≤ i ≤ n such that the following conditions hold:

1) The elements a, b1, . . . , bn remain linearly independent in k∗
n/k∗

n
2
.

2) Put Bj =
∑j

i=1(bi, xi + yi
√

a) ∈ 2 Br kj(
√

a). Then for any 1 ≤ j ≤ n

indBj = 2.

3) Put Aj =
∑j

i=1(bi, x
2
i − ay2

i ) ∈ 2 Br kj . Then for any 1 ≤ i ≤ j ≤ n and a

finite field extension l/k0 such that (Aj)lkj
= 0, either

√
bi ∈ l or

√
abi ∈ l.

In particular, [l : k0] ≥ 2j.

Proof. Let x1, y1 be indeterminates, k1 = k0(x1, y1). Put

A1 = (b1, x
2
1 − ay2

1) ∈ 2 Br k1, B1 = (b1, x1 + y1

√
a) ∈ 2 Br k1(

√
a).

We will prove the lemma by induction on n. If n = 1, conditions 1) and 2) are

obvious. To check condition 3) in this case, put l1 = l(
√

a)(y1) and consider

the second residue map

∂x1−
√

ay1
: 2 Br l1(x1) −→ l∗1/l∗1

2

with respect to the linear polynomial x1−
√

ay1. Since ∂x1−
√

ay1
((b1, x

2
1−ay2

1)) =

b1, we get that b1 is a square in l1, hence in l(
√

a), which is just what we need.

Now let n ≥ 2. Assume that we have already constructed a tower of fields k0 ⊂
k1 ⊂ · · · ⊂ kn−1 and the algebras A1, . . . , An−1, B1, . . . , Bn−1 with the required

conditions. Suppose Bn−1 = (u1+v1
√

a, u2+v2
√

a), where u1, u2, v1, v2 ∈ k∗
n−1.

Let t1, t2, t3 be indeterminates, and kn = kn−1(t1, t2, t3). Let further xn, yn ∈ kn
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be such elements that

xn + yn

√
a = (u1 + v1

√
a)t21 + (u2 + v2

√
a)t22 − (u1 + v1

√
a)(u2 + v2

√
a)t23,

i.e.,

xn = u1t
2
1 + u2t

2
2 − (u1u2 + av1v2)t

2
3,

yn = v1t
2
1 + v2t

2
2 − (u1v2 + u2v1)t

2
3.

Put

An = An−1 + (bn, x2
n − ay2

n) ∈ 2 Br kn,

Bn = Bn−1 + (bn, xn + yn

√
a) ∈ 2 Br kn(

√
a).

It is easy to see that xn + yn
√

a is a square in (Bn−1)kn−1(
√

a), which implies

that

(Bn)
kn(

√
a)(

√
xn+yn

√
a)

= 0,

hence indBn ≤ 2. Obviously, (Bn−1)kn(
√

a) 6= (bn, xn + yn
√

a), so indBn = 2.

Now suppose that a finite extension l/k0 is such that

0 = (An)lkn
= (An−1 + (bn, x2

n − ay2
n))lkn

.

Then

0 = (An)lkn(
√

a) = (An−1)lkn(
√

a) + (bn, (xn − yn

√
a)(xn + yn

√
a))lkn(

√
a).

Put K = lkn−1(
√

a, t1, t2). We can view the algebra

(An−1)lkn(
√

a) = (bn, (xn − yn

√
a)(xn + yn

√
a))lkn(

√
a)

as an algebra over K(t3). It has no residues with respect to the second residue

map

∂ =
⊕

∂p : 2 BrK(t3) −→
∐

p

K(p)
∗
/K(p)

∗2
,

where p runs over all monic irreducible polynomials from K[t3]. On the other

hand, the monic polynomials

P1(t3) = t23 −
(u1 + v1

√
a)t21 + (u2 + v2

√
a)t22

(u1 + v1
√

a)(u2 + v2
√

a)
=

−(xn + yn
√

a)

(u1 + v1
√

a)(u2 + v2
√

a)

and

P2(t3) = t23 −
(u1 − v1

√
a)t21 + (u2 − v2

√
a)t22

(u1 − v1
√

a)(u2 − v2
√

a)
=

−(xn − yn
√

a)

(u1 − v1
√

a)(u2 − v2
√

a)

are distinct. Hence

0 = ∂P1
((An−1)lkn(

√
a)) = bn,
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and so,

√
bn ∈ lkn

(
√

a, t1, t2,

√
(u1 + v1

√
a)t21 + (u2 + v2

√
a)t22

(u1 + v1
√

a)(u2 + v2
√

a)

)
.

This obviously implies
√

bn ∈ lkn(
√

a). Therefore, either
√

bn ∈ lkn or√
abn ∈ lkn. Since the extension kn/k0 is purely transcendental, we get that

either
√

bn ∈ l, or
√

abn ∈ l. In both cases it follows that (bn, x2
n − ay2

n)lkn
= 0.

Since

0 = (An)lkn(
√

a) = (An−1)lkn(
√

a) + (bn, x2
n − ay2

n)lkn(
√

a),

we get

(An−1)lkn(
√

a) = 0.

Since kn = kn−1(t1, t2, t3), it follows that

(An−1)lkn−1(
√

a) = 0,

and by the induction assumption we conclude that for any 1 ≤ i ≤ n − 1 either√
bi ∈ l or

√
abi ∈ l. The induction step is done, so the lemma is proved.

Since indBn = 2, it follows that indAn = indNkn(
√

a)/kn
(Bn) = 2 or 4. If

indAn = 2, put k = kn. If indAn = 4 put k = kn(φ), where φ is an Albert form

corresponding to An. It is easy to see that condition 3) remains valid for the

field k and the algebra (An)k, i.e., if the extension l/k0 is finite and (An)lk = 0,

then for any 1 ≤ i ≤ n either
√

bi ∈ l or
√

abi ∈ l.

Now put A = (An)k, B = (Bn)k(
√

a). Let C be the projective conic over k

corresponding to A. Set F = k(C). Then, obviously, AF = 0. Consider the

exact sequence [M]

2 BrF
res→ 2 BrF (

√
a)

N→ 2 BrF.

Since

0 = AF = NF (
√

a)/F (BF (
√

a)),

we have BF (
√

a) = DF (
√

a) for some D ∈ 2 Br F . Since indB = 2, we get

indD ≤ 4. It is well-known that if ind D = 4, then D = D1 + D2 for some

D1, D2 ∈ 2 BrF , such that indD1 = ind D2 = 2 and D2F (
√

a) = 0. Hence, we

may change D for D1 and so assume that indD ≤ 2.

From now on we will assume that n ≥ 2. Put L = F (
√

a,
√

b1, . . . ,
√

bn). Let

F ⊂ F1 ⊂ F2 ⊂ L be a tower of fields such that
√

a /∈ F2, [F2 : F1] = 4, [L : F1] = 8.
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Obviously, L = F2(
√

a) = F1(
√

a)F2 and F1 = kl1(C), F2 = kl2(C) for some

multiquadratic extensions l1/k0, l2/k0 of degree 2n−2 and 2n, respectively.

Proposition 2: 1) The elements a, b1, . . . , bn remain linearly independent in

F ∗/F ∗2;

2) indD = 2;

3) DL = 0;

4) the algebra DF1
does not decompose into a sum DF1

= D1 + D2, where

D1 ∈ 2 Br(F1(
√

a)/F1) and D2 ∈ 2 Br(F2/F1);

Proof. 1) Obvious.

2) Assume that indD = 1, i.e. D = 0. Then Bk(
√

a)(C) = 0, hence Bk(
√

a) is

either 0 or Ak(
√

a). In both cases A = Nk(
√

a)/kB = 0, a contradiction.

3) Obvious, since DF (
√

a) =
∑n

i=1(bi, xi + yi
√

a).

4) Assume the contrary, i.e., that D = D1+D2, where D1 ∈ 2 Br(F1(
√

a)/F1)

and D2 ∈ 2 Br(F2/F1). Then

BF1(
√

a) = DF1(
√

a) = D2F1(
√

a).

Denote the field kl1 by k̂, so that F1 = k̂(C). Consider the points z1, . . . , zm ∈
Ck̂ at which the algebra D2 has nonzero residues under the second residue map

2 Br F1 →
∐

z∈C
k̂

k̂(z)
∗
/k̂(z)

∗2
.

Since B is defined over k(
√

a), the algebra D2F1(
√

a) = BF1(
√

a) has no residues

at all. This implies that the residues of D2 at the points z1, . . . , zm are equal

to a. Recall that F2 = kl2(C), and let c1, . . . , cn ∈ k∗
0 be elements such that

l2 = k0(
√

c1, . . . ,
√

cn). Therefore, since D2F2
= 0, we have for any j

ak̂(zj)(
√

c1,...,
√

cn) ∈ k̂(zj)(
√

c1, . . . ,
√

cn)∗
2
.

Denote by cI the product
∏

i∈I ci (the similar notation will be used also in the

sequel). Thus, given any j, we have acI ∈ k̂(zj)
∗2

for some I ⊂ {1, . . . , n}
depending on j, i.e.,

k̂(
√

acI) ⊂ k̂(zj).

Lemma 3: For any j we have 4| deg zj .

Proof. Assume this is not the case. Consider the tower k̂ ⊂ k̂(
√

c) ⊂ k̂(zj),

where c = acI and I corresponds to the point zj . Notice that
√

c /∈ k̂ = kl1,
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for otherwise
√

c ∈ kl2, and so
√

a ∈ F2, a contradiction. Hence [k̂(zj) : k̂(
√

c)] is

odd. Since Ak̂(zj)
= 0 we conclude that Ak̂(

√
c) = 0. Therefore, (An)knl1(

√
c) = 0,

a contradiction to Lemma 1, since [l1(
√

c) : k0] = 2n−1. The lemma is

proved.

Now we use the fact that any divisor of degree zero on a projective conic

is principal. Choose any y ∈ Ck̂ such that deg y = 2. Let s =
∑m

i=1 deg zj.

Consider the divisor a = −(s/2)y +
∑m

i=1 zi. Obviously, deg a = 0, hence there

is f ∈ F ∗
1 such that a = (f). The algebra (a, f) has nonzero residues just at

the points z1, . . . , zm, since by Lemma 3 the number s/2 is even. Moreover,

all these residues are equal to a. Therefore, the algebra D̂2 = D2 + (a, f)

has no residues, i.e., D̂2 ∈ 2 Br(Ck̂). Merkurjev’s theorem [M] claims that

K2k̂(C)/2K2k̂(C) ≃ 2 Br k̂(C). Hence by ([Su], Lemma 5) we get that either

D̂2 ∈ resF1/k̂(2 Br k̂)

or

2 Br(Ck̂)/ resF1/k̂(2 Br k̂) = Z/2Z,

and the element D̂2 is nontrivial in this factor group.

In the first case let D̂2 = resF1/k̂ D̃ for some D̃ ∈ 2 Br k̂. Then

(D̃ + B)k̂(
√

a)(C) = (D̂2 + B)k̂(
√

a)(C) = (D2 + B)k̂(
√

a)(C)

= (D + B)k̂(
√

a)(C) = 0.

Hence (D̃ + B)k̂(
√

a) is either zero or Ak̂(
√

a). But then

0 = Nk̂(
√

a)/k̂(D̃ + B) = Nk̂(
√

a)/k̂B = Ak̂,

hence (An)l1kn
= 0, a contradiction to Lemma 1, since [l1 : k0] = 2n−2. In the

second case, when D̂2 /∈ resF1/k̂ (2 Br k̂), let A = (a1, a2), where a1, a2 ∈ k∗.

Then F1 is the quotient field of the ring k̂[u1, u2]/(a1u
2
1 + a2u

2
2 − 1), where

u1, u2 are indeterminates. It is easy to see that NF1/k̂(u1)(D̂2) = A. Consider

the commutative diagram

2 BrF1

N

��

res
//
2 BrF1(

√
a)

N

��

2 Br k̂(u1)
res

//
2 Br k̂(

√
a)(u1)
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So we have

resk̂(
√

a)(u1)/k̂(u1)
A = resk̂(

√
a)(u1)/k̂(u1)

◦ NF1/k̂(u1)(D̂2)

= NF1(
√

a)/k̂(
√

a)(u1) ◦ resF1(
√

a)/F1
(D̂2) = NF1(

√
a)/k̂(

√
a)(u1)

(B) = 0,

hence resk̂(
√

a)/k(A) = 0, a contradiction to Lemma 1, since [l1(
√

a) : k0] = 2n−1.

Thus Proposition 2 is proved.

Recall that L = F (
√

a,
√

b1, . . . ,
√

bn). Proposition 2 implies the following

corollary, which is of some independent interest, and which can be considered

as a generalization of Theorem 5.1 in [ELTW].

Corollary 4: Let F ⊂ L1 ⊂ L, F ⊂ L2 ⊂ L be proper field subextensions of

L/F . Then

1) D /∈ 2 Br(L1/F ) + 2 Br(L2/F ). In particular,

2 Br(L/F ) 6= 2 Br(L1/F ) + 2 Br(L2/F ).

2) f /∈ W (L1/F ) + W (L2/F ), where f ∈ W (L/F ) is the 2-fold Pfister form

corresponding to D.

Proof. 1) Obviously we may assume that [L : L1] = [L : L2] = 2 and L = L1L2.

Then [L : L1 ∩ L2] = 4. Choose a field F1 such that

F ⊂ F1 ⊂ L1 ∩ L2,
√

a /∈ F ∗
1 , [L1 ∩ L2 : F1] = 2.

Then

[L : F1] = 8, [L1 : F1] = [L2 : F1] = 4,

L1 = F1(
√

d1,
√

d2), L2 = F1(
√

d1,
√

d3)

for some d1, d2, d3 belonging to the multiplicative group generated by the el-

ements a, b1, . . . , bn. We will show that DF1
/∈ 2 Br(L1/F1) + 2 Br(L2/F1).

Assume the contrary. Then

DF1
= (d1, e1) + (d2, e2) + (d3, e3)

for some e1, e2, e3 ∈ F ∗
1 . Obviously, we may suppose that a is equal either to

di, or to didj (i < j), or to d1d2d3. We have

DF1
= (d1d2, e1) + (d2, e1e2) + (d3, e3) = (d1d2d3, e1) + (d2, e1e2) + (d3, e1e3).

Put F2 = F1(
√

d2,
√

d3). We conclude that

DF1
∈ 2 Br(F1(

√
a)/F1) + 2 Br(F2/F1),
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which contradicts Proposition 2.

2) This part easily follows from part 1). Indeed, assume that [f ] = [f1]+ [f2],

where f1 ∈ W (L1/F ), f2 ∈ W (L2/F ). Obviously, disc(f1) = disc(f2). Let

g1, g2 ∈ I2(F ) be forms, such that dim(fi ⊥ −gi)an ≤ 2 for i = 1, 2. It is

clear that gi ∈ W (Li/F ). If Di ∈ 2 Br F correspond to gi under the map

I2(F )/I3(F ) ≃ 2 BrF , then D = D1 + (D2 + (disc f2, u)) for some u ∈ F ∗, a

contradiction to part 1) since ≪ disc(f2)〉〉 ∈ W (L2/F ).

Lemma 5: Let K be a field, K((t))odd any maximal odd degree extension of

K((t)). Then the following holds:

1) there exists a field inclusion Kodd((t)) →֒ K((t))odd over K((t)) for some

maximal odd degree extension Kodd of K;

2) K((t))odd
∗
/K((t))odd

∗2 ≃ Kodd
∗/Kodd

∗2 ⊕ Z/2Z, where the element t ∈
K((t))odd

∗
/K((t))odd

∗2
corresponds to the nontrivial element of Z/2Z and

Kodd
∗/Kodd

∗2
is naturally embedded into K((t))odd

∗
/K((t))odd

∗2
under this

isomorphism.

Proof. 1) Any finite extension L of K((t)) is a complete valuation field of char-

acteristic equal to the characteristic of its residue field. We have L = L((π)),

where L is a subfield of L isomorphic to the residue field and π is a uniformizer

([Se], Chapter 2, Theorem 2). It is easy to check that we can choose for Kodd

the union of all finite extensions of K contained in K((t))odd.

2) Assume L/Kodd((t)) is a finite odd degree extension. Then

L ≃ Kodd((π)), L∗/L∗2 ≃ Kodd
∗/Kodd

∗2 ⊕ Z/2Z,

where π ∈ L∗/L∗2 corresponds to the nontrivial element of Z/2Z and

Kodd
∗/Kodd

∗2
is naturally embedded into L∗/L∗2. Denote by v the discrete

valuation on L. Obviously, v(t) is odd, hence πt ∈ Kodd
∗/Kodd

∗2 →֒ L∗/L∗2.

Therefore, there exists another isomorphism

L∗/L∗2 ≃ Kodd
∗/Kodd

∗2 ⊕ Z/2Z,

where t ∈ L∗/L∗2 corresponds to the nontrivial element of Z/2Z and

Kodd
∗/Kodd

∗2
is naturally embedded into L∗/L∗2. Also it is clear that the last

isomorphisms are compatible for various L, which completes the proof.
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Corollary 6: Let K be a field, E = K((t0)) . . . ((tn)) the iterated Laurent

series field. Let Eodd be any maximal odd degree extension of E. Then

Kodd →֒ Eodd, Eodd
∗/Eodd

∗2 ≃ K∗
odd/K∗

odd
2 ⊕ (Z/2Z)

n+1

for some maximal odd degree extension Kodd of K, and under this isomorphism

the element ti (0 ≤ i ≤ n) corresponds to the nontrivial element of the i + 1-st

factor of (Z/2Z)
n+1

while K∗
odd/K∗

odd
2 is naturally embedded into E∗

odd/E∗
odd

2.

Proof. Taking into account Lemma 5, the proof is immediate by induction on

n.

Lemma 7: Let K be a field, let c0, . . . , cn ∈ K∗/K∗2 be linearly independent

elements. Suppose the algebra α ∈ 2 BrK is such that αK(
√

c0,
√

c1,...,
√

cn) 6= 0.

Let further t0, . . . , tn, x be indeterminates. Then for any 0 ≤ i ≤ n + 1

ind[α + (c0, t0) + · · · + (cn, tn)]E ≥ 2n+2,

where

E = K((t0)) . . . ((ti−1))((x))((ti)) . . . ((tn)).

Proof. The argument is by induction on n. Suppose first that i ≤ n. Put

E1 = K((t0)) . . . ((ti−1))((x))((ti)) . . . ((tn−1)).

By induction hypothesis ind[α + (c0, t0) + · · · + (cn−1, tn−1)E1(
√

cn)] ≥ 2n+1.

Applying Tignol’s theorem ([T2], Proposition 2.4) we finish the proof. If i =

n + 1, the argument is similar with a slight modification.

3. Construction of indecomposable algebras

We turn now to construct the indecomposable algebras of an arbitrary 2-primary

index and exponent 2. From now on we change the notation a bit.

Let F be an arbitrary field, n ≥ 2, a, b1, . . . , bn ∈ F ∗, D ∈ 2 Br F . We call

the triple (F, D, {a, b1, . . . , bn}) admissible if the following conditions hold:

a) the elements a, b1, . . . , bn ∈ F ∗/F ∗2 are linearly independent;

b) indD = 2;

c) DF (
√

a,
√

b1,...,
√

bn) = 0;

d) for any tower F ⊂ F1 ⊂ F2 ⊂ L = F (
√

a,
√

b1, . . . ,
√

bn) such that

√
a /∈ F ∗

2 , [L : F1] = 8, [F2 : F1] = 4
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we have

DF1
/∈ 2 Br(F1(

√
a)/F1) + 2 Br(F2/F1);

e) the field F has no proper extensions of odd degree.

Notice that Proposition 2 give us examples of triples satisfying conditions

a) − d) of the above definition.

Proposition 8: 1) If the triple (F, D, {a, b1, . . . , bn}) satisfies condition a)−d)

above, then the triple (Fodd, Dodd, {a, b1, . . . , bn}) is admissible.

2) If the triple (F, D, {a, b1, . . . , bn}) is admissible, n ≥ 3, c ∈ F ∗, and

F (
√

a,
√

b1, . . . ,
√

bn) = F (
√

c,
√

a,
√

b1, . . . ,
√

bn−1),

then the triple (F (
√

c), DF (
√

c), {a, b1, . . . , bn−1}) is admissible as well.

3) If the triple (F, D, {a, b1, . . . , bn}) is admissible, and

L = F (
√

a,
√

b1, . . . ,
√

bn),

then Corollary 4 holds for the extension L/F and the algebra D.

Proof. 1) Conditions a), b), c) and e) are obvious, and applying the norm map

we obtain condition d).

2) The proof is straightforward, and we leave it to the reader.

3) Obvious.

Now let (F, D,{a, b1, . . . , bn}) be an admissible triple. Put E=F ((t0)) . . . ((tn)).

Suppose C is the division algebra over E such that

C ∼ D ⊗ (a, t0) ⊗ (b1, t1) ⊗ · · · ⊗ (bn, tn).

The main purpose of the present article is the following

Proposition 9: 1) ind C = 2n+1.

2) The algebra Codd
def
= CEodd

does not decompose into a tensor product of two

nontrivial algebras over any maximal odd degree extension Eodd of E.

Proof. 1) Since CL = 0 we have indC ≤ 2n+1. On the other hand, applying

Lemma 7 to the field F0 = F ((t0)) and the algebra C0 = D ⊗ (a, t0) we get

indC = ind[(D + (a, t0)) + (b1, t1) + · · · + (bn, tn)] ≥ 2n+1.

2) The proof is by induction on n. Assume that the algebra Codd is decom-

posable, Codd ≃ D1 ⊗Eodd
D2 and indD1, indD2 ≥ 2. Consider two cases:

a) indD1 = 2 or indD2 = 2.
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Suppose for instance ind D1 = 2. By Lemma 5 D1 ≃ (ptI , stJ), where

I, J ⊂ {0, 1, . . . , n}, p, s ∈ F ∗.

Case a) splits in turn into two subcases.

a1) I 6= ∅ or J 6= ∅. Assume I 6= ∅.
Suppose I = {k + 1, k + 2, . . . , n} for some k (the general case can be

treated similarly, using Lemma 7). Then we have

CEodd(
√

ptI) =D + (a, t0) + (b1, t1) + · · · + (bn−1, tn−1)

+ (bn, ptk+1 · · · tn−1)

=D + (bn, p) + (a, t0) + (b1, t1) + · · · + (bk, tk)

+ (bk+1bn, tk+1) + · · · + (bn−1bn, tn−1).

The field Eodd(
√

ptI) can be considered as an iterated Laurent series field,

namely, Eodd(
√

ptI) = F ((t0)) . . . ((tn−1))((x)), where x =
√

ptI . Put

L1 = F (
√

a,
√

b1, . . . ,
√

bk,
√

bk+1bn, . . . ,
√

bn−1bn), L2 = F (
√

bn).

Since indCEodd(
√

ptI ) = 1/2 indC = 2n, it follows by Lemma 7 that

(D + (bn, p))L1
= 0.

Therefore,

D = (D + (bn, p)) + (bn, p) ∈ 2 Br(L1/F ) + 2 Br(L2/F ),

which contradicts Corollary 4.

a2) I = J = ∅, i.e. D1 = (p, s), where p, s ∈ F ∗.

Then

ind[D + (p, s) + (a, t0) + (b1, t1) + · · · + (bn, tn)] = indD2 = 2n,

which contradicts Lemma 6.

Thus we have completed the proof in the case a). In particular, we have

proved indecomposability of C in the case n = 2.

b) ind D1 ≥ 4 and indD2 ≥ 4.

In particular, n ≥ 3. Obviously, either indD1Eodd(
√

a) = indD1 or

indD2Eodd(
√

a) = indD2. Assume that ind D1Eodd(
√

a) = indD1. Since any fi-

nite extension of Eodd is a tower of quadratic extensions, there exists c ∈ Eodd
∗

such that indD1Eodd(
√

c) = 1
2 indD1. Moreover, since F has no proper odd de-

gree extensions, we may assume by Lemma 5 that c = ptI for some p ∈ F ∗ and

I ⊂ {0, 1, . . . , n}. Let D1Eodd(
√

ptI) ∼ D′
1, where D′

1 is some nontrivial division
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algebra over Eodd(
√

ptI). If I 6= ∅, we come to a contradiction just as in case

a). So suppose that I = ∅. Since indD1Eodd(
√

a) = indD1, we have pa /∈ F ∗2,

and

indCEodd(
√

p) = ind[D + (a, t0) + (b1, t1) + · · · + (bn, tn)]Eodd(
√

p) = 2n.

It follows from Lemma 6 that the elements a, b1, . . . , bn are linearly dependent in

F (
√

p)∗/F (
√

p)∗
2
. This in turn means that we may assume that either p = bI

or p = abI for some ∅ 6= I ⊂ {1, . . . , n}. Let p = bI , for instance, where

I = {k + 1, . . . , n} (the general case can be treated with a slight modification,

and is left to the reader). Put

K = F (
√

p)((t0)) . . . ((tn−1)), L = F (
√

p)((t0)) . . . ((tn−1))((
√

tn)).

Then

D ⊗ (a, t0) ⊗ (b1, t1) ⊗ · · · ⊗ (bn−1, tn−1)Lodd
∼ CLodd

∼ D′
1 ⊗Lodd

D2

for any maximal odd degree extension Lodd of L, containing Eodd(
√

p). On

the other hand, by Proposition 8 the triple (F (
√

p), DF (
√

p), {a, b1, · · · , bn−1})
is admissible. Hence by the induction hypothesis for any maximal odd degree

extension Kodd of K we have

D ⊗ (a, t0) ⊗ (b1, t1) ⊗ · · · ⊗ (bn−1, tn−1)Kodd
∼ C1Kodd

,

C1 being a division algebra over K such that it is indecomposable over Kodd

and indC1 = 2n. By the first part of Lemma 5 we can choose Kodd in such a

way that Kodd((
√

tn)) →֒ Lodd over K((
√

tn)). This implies

C1Lodd
∼ D′

1 ⊗Lodd
D2.

Since, obviously, ind(D′
1 ⊗Lodd

D2) = indC1Lodd
= 2n, we have

C1Lodd
≃ D′

1 ⊗Lodd
D2.

By ([Se], Chapter 2, Theorem 2) the field Lodd is the direct limit of fields

Kodd((u)), where u is an indeterminate. Hence for some u ∈ Lodd the algebras

D′
1 and D2 are defined over Kodd((u)) and

C1Kodd((u)) ≃ D′
1 ⊗Kodd((u)) D2.

It is well known that for any field k and positive integer m not divided by chark

H2(k((x)), µm) ≃ H2(k, µm) ⊕ H1(k, Z/mZ),
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where µm is the group of mth roots of unity. From this and the cohomological

interpretation of the Brauer group it follows that

D′
1 = res

Kodd

((
u

1

s

))
/Kodd

D̃1, D2 = res
Kodd

((
u

1

s

))
/Kodd

D̃2

for a sufficiently large 2-power s and some central division algebras D̃1 and D̃2

over Kodd. Since the natural map BrKodd → BrKodd

((
u

1

s

))
is injective,

C1Kodd
= D̃1 + D̃2,

and by dimension count we conclude that

C1Kodd
≃ D̃1 ⊗Kodd

D̃2,

a contradiction to indecomposability of the algebra C1 over Kodd.

Summing up the obtained results and changing the notation a bit we get the

following

Corollary 10: Let k be a field, n≥3. Suppose the elements a1,. . ., an∈k∗/k∗2

are linearly independent over Z/2Z. Then there exists a field extension F/k, a

quaternion algebra D ∈ 2 BrF and a division algebra C ∈ 2 BrF ((t1)) . . . ((tn))

of index 2n such that

1) C is indecomposable over any odd degree extension of E = F ((t1)) . . . ((tn)).

2) M2(C) ≃ (a1, t1) ⊗E · · · ⊗E (an, tn) ⊗E D.

3) D ∈ 2 Br(F (
√

a1, . . . ,
√

an)/F ).

Proof. This immediately follows from Propositions 2, 8 and 9.
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